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Let X be a Rn-valued random variable; for a class of suitable nondecreasing func­
tions tf>: R + -> R + and ct E (0, 1), a family of best approximations to X based on
trimming procedures is obtained. Existence and a characterization which relates the
best approximations and the best trimming sets are obtained. The problem of
uniqueness is studied for real valued random variables. © 1991 Academic Press, Inc.

1. INTRODUCTION

Procedures based on trimming a data set and subsequently choosing a
best approximation of the remaining set are well known in several branches
of mathematics. Perhaps the best known of such procedures is the trimmed
mean, of frequent use in statistics and obligatory reference in robust
statistics criteria.

However, the problem arises from the arbitrariness which appears in the
way one selects the proportion to be trimmed in the left and right sides of
the data. On the other hand we take also into account the difficulty in
generalizing this procedure to random variables valued in R" where there
do not exist preferential directions for removing data.

This paper deals with obtaining best approximations to random
variables based on trimming procedures which both do not depend on
arbitrary decisions and can be defined directly for Rn-valued LV.

The paper will be developed in the general framework of a Rn-valued
random variable X defined on a probability space (Q, (J, P). For a suitable
nondecreasing function cP: R + -'> R + and for a E (0, 1) we look for a Borel
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set Bo with P(X E Bo)~ 1 - 0( and a value moE R" such that the discrepancy
over Bo between X and mo, given by

becomes as small as possible. To be more precise: We try to obtain Bo and
ma satisfying

1 f .PABo) Iso(X)<P(IIX-moll)dP

= inf inf ~()J Is(X) <P(IIX-ml!)dP, (1.1)
SE(J".PX<S);;;'I-~ mERn P x B

where III/denotes the usual norm on R", I A denotes the indicator set func­
tion of A, and P x is the probability measure induced by X on (R",lr).
(Similar techniques are employed by Rousseeuw [3] and Rousseeuw
and Yohai [4] for trimming data sets in the context of estimation with
high breakdown point. Nevertheless the kind of results obtained is very
different. )

Note that for fixed BoE f3"

_(l_)J Iso(Xl<P(IIX-mll)dP=J<P(llx-mllldPA-/Bo) (1.2)
P x Bo

and then, the solutions of

are the well known <P-means of PA-IBo). (See Herrndorf [2J and Br0ns et
at. [1] for references of <P-means, p-means, and other generalized means.)

If Bo and rno are a solution of (1.1 l then they will be called a lJl-best
trimming set for X at level 0( and an impartial trimmed <P-mean of X at
level iX, respectively.

The word "impartial" means that it is the random variable X itself which
provides the best way of trimming it.

The problem can be stated in a more general way by using "trimming"
functions instead of trimming sets. A trimming function for X at level
0( is a f3-measurable map or: R" --+ [0, 1] satisfying S'!(X) dP ~ 1 - 0(. The
trimming functions explain the degree of participation of each point for
"trimming" the LV. X. When we are working with trimming sets, each
point either participates completely or does not participate at all in the
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construction of the approximation to X. On the other hand when we are
handling trimming functions, all possible halfway degrees of participation
are available.

Now the problem is to select a To E T and a value moE R n such that

STO(~) dP f To(X) iP( IIX - moll) dP

=inf inf S (\d fT(X)iP(IIX-mll)dP, (1.3)
TETmERn TX P

where T denotes the class of trimming functions for X at level \/..
Obviously IBET for every Borel set B with PAB) ;?; 1- \/., hence the

approximation obtained through trimming functions could be better than
the one obtained through trimming sets.

If for fixed T E T, P~ denotes the probability on (Rn, f3n) given by

r(A) = SA T(X) dPx

x ST(X) dP x

analogously to (1.2) we have

for all A E f3n,

so the solutions of

STO(~) dP f TO(X) iP( IIX - moll) dP

= inf S (1) d f To(X) iP(IIX -mil) dP
mER" TO X P

an:: the iP-means of p:o.
If TO and mo are a solution of (1.3) then To will be called a iP-best

trimming function for X at level IX, and m o, as above, an impartial trimmed
iP-mean of X at level \/..

Among the different methods for obtaining best approximations to X
based on trimming procedures we also consider those corresponding to
Lao-norms: Choose a set BoE f3n with P(X E Bo);?; 1 - \/. and a value moE Rn

verifying

ess sup IIX -moll = inf inf ess sup IIX -mil. (1.4)
XEBO BEP" mERn XEB
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If Bo and rno are a solution of (1.4) they will be called a L 00 -best
trimming set for X at level lX and an impartial Chebyshev center (CH­
center) of X at level lX, respectively.

Analogously, if we work with trimming functions we try to obtain 1:0 and
rno such that

esssup IIX-rnoll=inf inf esssup IIX-mll, (1.5)
XESOp(TO) TET mER" XESOp(T)

where Sop(1:) = {xER nj1:(x»O}.
Now, if 1:0 and rno are a solution of (1.5) then 1:0 is called a Loo-best

trimming function for X at level lX, and rno as above an impartial CH-center
of X at level lX.

The main goal of this paper is to prove that the balls provide the best
ways of trimming. In Section 3 we prove the existence of impartial trimmed
lfJ-means and CH-centers at level lX for every random variable X.
Moreover, we will prove that the indicator set functions of balls in Rn are
essentially the lfJ-best trimming functions, and the impartial trimmed
q>-means will be characterized for being the centers of the balls defining the
q>-best trimming functions. In Section 4 we study the real case, and we
obtain for LV. X having a density, that unimodality is a sufficient condition
for assuring the uniqueness of the impartial trimmed lfJ-means.

2. NOTATION

In this paper (Q, a, P) is a probability space, X is a Rn-valued random
variable defined on (Q, a, P), f3n is the Borel a-algebra on Rn, and Px is the
probability measure induced by X on (Rn, f3n). With II II we will denote the
usual norm on R n

, and for rn E R n and r ~ 0, B(rn, r) will be the open ball
centered at rn and with radius r. Moreover, for a set BeRn, B denotes its
closure and Be its complementary set.

From now on, lfJ: R + --'> R + will be considered continuous, strictly
increasing, and such that lfJ(O) = O.

For lX E (0, 1), T = T( lX, X) denotes the set of trimming functions for X at
level lX, i.e.,

{

I 'I

T = T( lX, X) = 1:: R n
--'> [0, 1] measurableIf1:(X) dP ~ 1 - rxy

Also, for f3 ~ rx, with Tp we denote the subset of T given by
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The minimum values in (1.3) and (1.5) will be denoted by V~ (X) and
V:, (X), respectively.

It is obvious that V~ (X) < 00 for every rf>, (x, and X; in fact, taking a ball
B = B(O, r) such that Px(B) ~ 1 - (X we have

and analogously V:, < r < 00.

3. EXISTENCE OF IMPARTIAL TRIMMED rf>-MEANS

In this section we will need some additional notation: For fixed mE Rn

and f3 ~ (x, rrim) will be the radius of the smallest open ball centered at m
and verifying Px(B(m,rp(m)))~I-f3~PAB(m,rp(m))). Moreover, rm,p
will denote a trimming function in Tp verifying

[B(m, rp(m}) ~ rm,p ~ [J3(m,rp(m})'

LEMMA 1. Let mERn
, f3~(X, and B=B(m, rp(m)). Then

(a) Srm,p(X) rf>( IIX - mil) dP ~ Sr(X) rf>( IIX - mil) dP for all r E Tp,

(b) The equality holds in (a) if and only if [B ~ r ~ [B a.e. Px'

Proof Take rET and note that

rm,p(x)(l-r(x))=O forall x~B (3.1)

f rm,p(X)(I-r(X))dP=f r(X)(I-rm,p(X))dP (3.2)

r(x)(l-rm,p(x))=O for all XE B. (3.3 )

Now, applying (3.1) to (3.3) successively we have

f rm,p(X)(I- r(X)) rf>(IIX - mil) dP

~ rf>(rp(m)) fr(X)(I- rm,p(X)) dP (3.4 )

~f r(X)(I-rm,p(X))rf>(IIX-mll)dP. (3.5)
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So we have

f rm,p(X) c[>(IIX -mil) dP= f rm,p(X) r(X) c[>(iIX -mil) dP

+f rm,p(X)(l-r(X)) c[>(IIX -mil) dP

~f rm,p(X)r(X) <P(IIX-mli)dP

+fr(X)(l-rm,p(X))c[>(IIX- mll)dP

=f r(X) c[>( IIX- mil) dP;
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moreover, the equality holds if and only if (3.4) and (3.5) are equalities.
Now, (3.4) is an equality if and only if

t rm,p(x)(l- r(x)) dPx= 0

l.e.,

Ie (l-r(x))dPx=O,

i.e.,

I B ~ r, P x a.e.

Analogously, (3.5) is an equality if and only if

J- r(x)(l-rm,p(x))dPx=O,
B'

i.e.,

i.e.,

P x a.e.
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Then, the equality holds in (a) if and only if IB~,~h Px a.e. and the
proof is finished. I

LEMMA 2. Let mE R n and fJ ~ (x. Then

(a) (1/(1 - (X)) J'm,x(X) ctJ(IIX - mil) dP ~ (1/(1 - fJ)) J'm,p(X)
ctJ(IIX -mil) dP.

(b) The equality in (a) holds if and only if rx(m)=rp(m) and
P)B(m, rx(m)))=O.

Proof First note that, for any (X in (0, 1), if , and " are in Tx and
satisfy

we have

f ,(X)ctJ(IIX-mll)dP=f ,1(X)ctJ(IIX-mll)dP.

Hence, without loss of generality, we can assume that 'm,p(X)): 'm,x(X)
Px-a.s.: In fact, for f3 ~ (x, it is always possible to choose,m,p and 'm,x such
that 'm,p ~ 'm,x pointwise. Consequently

Also we have

f ('m,p(X) - 'm,x(X)) ctJ( IIX- mil) dP

): ctJ(rx(m)) f ('m,p(X) - 'm,x(X)) dP. (3.6)

<JJ(rx(m)) f 'm,x(X) dP): f 'm,x(X) <JJ(IIX- mil) dP. (3.7)

Now, applying (3.6) and (3.7) successively we have

):f 'm,x(X)dPctJ(rx(m)) f ('m,p(X)-'mjX))dP

): f 'm,x(X) ctJ(IIX -mil) dP f ('m,p(X)-'m,x(X)) dP.
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So we have

f'm,a(X)dP f'm,p(X) <P(IIX-mll)dP

= f'rn,a(X) dP f'rn,,,(X) <p( IIX - mil) dP

+f'm,a(X)dP I('m,p(X)-'m,a(X)) <p(IIX-mll)dP

~ f 'm,AX) dP f'm,)X) <p(IIX -mil) dP

+f'm,a(X) <P(IIX-mll)dP f ('rm,p(X)-Tm,a(X))dP

= f'm,p(X)dP f'm,a(X) <p(IIX-mll) dP,

l.e.,

(1-a) f'm,p(X)<p(IIX-mll)dP~(1-p) f'm,a(X) <P(IIX-mll)dP.
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Moreover, the equality in (a) holds if and only if (3,6) and (3.7) are
equalities.

Now, the equality in (3.6) holds if and only if

(where B= B(m, ra(m))) which holds if and only if ra(m) = rp(m).
Analogously, (3,7) is an equality if and only if

i.e.,

PxCB) = O. I

PROPOSITION 3. inf'ET infmERn (lIS ,(X) dP) S reX) <p(IIX - mil) dP =
infrnERn (1/(l- a)) S'm,a(X) <p(IIX - mil) dP.

640/64/2·4
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Proof Let T E T and m ERn. Applying successively Lemma 2 and
Lemma 1 we obtain

hence Proposition 3 holds. I
The above result will be very useful for proving the existence of impartial

trimmed W-means.

THEOREM 4 (Existence). Let X be a r.v. defined on (Q, (J, P) and valued
in Rn. Let 0: E (0, 1) and let W: R + -+ R + a continuous strictly increasing
function such that W(O) = O. Then there exists an impartial trimmed W-mean
of X at level 0:.

Proof From Proposition 3 we can take a sequence {mn} eRn such
that

(3.8)

To simplify the notation we will denote, for every n E N,

and

It is easy to see that {mn} and {rn} are bounded sequences and, there­
fore, we can obtain convergent subsequences which we denote as the initial
ones.

Hence we have

and

Let us denote Bo= B(mo, ro), i.e., the limit ball. Note that

IBo(X):::;; lim T,,(X):::;; lim Tn(X):::;; Iso

hence Fatou's Lemma implies that

i.e.,

and
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Let us denote To = Tmo,a' We will prove that To and mo satisfy

which implies that

_1_ ITo(X) 4l(IIX -moll) dP= V~.
1-ct

It is obvious that

II Tn(X)41(IIX-mnll)dP- ITo(X)41(IIX-mol!)dPI

= II(Tn(X) 4l( IIX - mnll) - To(X) $( IIX - moll)) dP!

= IITn(X)( 4l( IIX - mnll) - $( IIX - moll)) dP
I

+I(Tn(X)-To(X))41(IIX-moll)dPI

:( IITn(X)( 4l( IIX - mnll) - 4l( IIX- moll)) dPI

+ II (Tn(X)-To(X)) 4l(IIX -moll) dPI
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(3.9)

hence it suffices to prove that the sequences {An} and {Kn} converge to O.
Since 4l is uniformly continuous on the compact set [0, SUPn rnJ, we

have

An = IITn (X)(41(IIX - mnll) - 4l(IIX - moll)) dP!

:(I Tn(X) 141(IIX-mnll)-41(IIX- moll)1 dP

:((l-ct) sup 141(IIX-mnll)-41(IIX-mollll ) o.
XE lin

Let us denote C= {XjT~(X»To(X)} and Dn= {xjTn(X) <To(X)}. We
have
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and then
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Now, taking into account that en C B~ n Bnand DnC Bon B~ for every n,
we have

and

So applying (3.10) to (3.12) we obtain

hence applying once more (3.10) to (3.12) we obtain

Kn=lf (rn(x)-ro(X))cP(IIX-moll)dPI

=f(rn(X)-ro(X)) cP(IIX -moll) dP
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=f (rn(x)-ro(x))eJ>(llx-moll)dPx
cn

-f (ro(x)-rn(x))eJ>(llx-moll)dPx
Dn

:s;eJ>(rn+ limn-moil) f (rn(x)-ro(x))dP x
cn

-eJ>(rn-llmn-moll) f (To(x)-rn(x))dP x
Dn

:s;eJ>(rn+ Ilmn-moll)-eJ>(rn-llmn-moll) • 0,n ~ 00
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and the proof is complete. I
As a consequence of Lemma 1 we obtain a very important relationship

between the impartial trimmed eJ>-means and the eJ>-best trimming func­
tions:

THEOREM 5. Under the hypotheses of Theorem 4, if To and mo are a
solution of (1.3) and B=B(mo, r,,(mo)) then

P x a.e. (3.13 )

Proof On the contrary, suppose that (3.13) IS not true. Then
Lemma 1(b) implies that

so (ro, mo) cannot be a solution of (1.3). I

COROLLARY 6. Under the hypotheses of Theorem 5, if P x is absolutely
continuous with respect to the Lebesgue measure on R n

, then

P x a.e.

Definitively we have proved that the balls provide the best ways of
trimming random variables. Therefore, roughly speaking, the search of the
best trimming sets and functions can be restricted to the balls and the
indicator set functions of the balls, respectively. Moreover we know that
there exists a double relationship between the impartial trimmed <p-means
and the eJ>-best trimming functions: The impartial trimmed eJ>-means of X
at level a are the centers of the balls defining the eJ>-best trimming functions
for X at level a and also the eJ>-means of P x "restricted" to such balls.
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All the results in this section are true in the case of Loo-approximation
and the proofs are obvious. In fact these results become:

LEMMA I'. Let mERn
, f3~IY., and B=B(m, rfl(m)). Then

(a) ess sup XE Sop(rm,p) IIX- mil ~ ess sup XESop(r) IIX- mil for all, E Tfl·

(b) The equality holds in (a) if and only if, ~ In a.e. Px'

LEMMA 2'. Let mE R n and f3 ~ IY.. Then

(a) ess SUPXESop(rm,.) IIX-mil ~ess SUPXESop(rm,p) IIX-mil.
(b) The equality in (a) holds if and only if r,Jm ) = rfl(m ).

PROPOSITION 3'. infrE T infmE Rn ess sup XE Sop(r) IIX- mil = infmERn r ,,(m).

THEOREM 4' (Existence). Let X be a r.v. defined on (Q, (i, P) and valued
in R n and let IY. E (0, 1). Then there exists an impartial trimmed CH-center of
X at levellY..

THEOREM 5'. Under the hypotheses of Theorem 4', if '0 and mo are
solutions of (1.5) and B = B(mo, r,,(mo)) then

Px a.e.

COROLLARY 6'. In the hypotheses of Theorem 5', if Px is absolutely
continuous with respect to the Lebesgue measure on R n

, then

P x a.e.

Remark 7. The advantages of working with trimming functions instead
of trimming sets are very important:

(i) Obviously, sometimes there do not exist Borel sets with
Px-measure exactly 1 -IY..

(ii) There exist random variables whose <P-best trimming sets are
neither a ball nor a convex set.

EXAMPLE. Let X be a real valued random variable such that
P[X = 0] = 1/2, P[X = 1] = 3/8, and P[X= 6/5] = 1/8. Let IY. = 3/8 and let
<P(t) = t2

• It is easy to see that the <P-best trimming sets for X at level IY.

have to contain {O, 6/5} and 1 cannot belong to them.

(iii) The <P-best trimming set has no universal bound.
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EXAMPLE. Let X be a real valued random variable with the probability
law given by

P[X=a]=e- 1

P[X=k] =e-1/k!, k= 1, 2, ....

For 0: = e~l and cP(t) = t2 we can see that for a ~ - 00 the cP-best
trimming sets for X at level 0: have to contain {1, 2, ... , 00 }.

Remark 8. For random variables with the probability law absolutely
continuous with respect to the Lebesgue measure on (Rn

, /r), trimming
functions and trimming sets provide the same results.

Remark 9. If we consider the case 0: =°then the best approximations
obtained are the cP-means of X. The case 0: = 1 has no sense; however, we
can study what does happen for 0: ~ 1. Let {O:n} C (0, 1) such that O:n ~ 1.
For every n~ 1, let mn be an impartial trimmed cP-mean (resp. CH-center)
of X at level 0:. Suppose that m is an accumulation point of {m n , n~ 1}. It
is easy to see that:

(i) If S= {XE Rn/P[X= x] >o} # 0 then mESo

(ii) If Px has a densityfthenf(m)~f(x) for all XER
n

.

4. UNIQUENESS IN THE CASE OF REAL VALUED RANDOM VARIABLES

Throughout this section X is a real valued r.v. defined on (il, (1, P) with
distribution function F. Moreover we will suppose some additional condi­
tions for the function cP:

cP has a derivative 'I'(t) = :t cP(t)

'I'has a derivative 'I"(t) = ~ '1'(1).

(4.1 )

(4.2)

Since cP is strictly increasing, hence '1'( t) > 0 for every t E R + .

For every mER, (l(m), u(m)) will denote the shortest interval centered at
m (m = (l(m) + u(m) )/2) and verifying

PA(l(m), u(m ))) ~ 1- 0: ~ PA [l(m), u(m )]).

Because of Theorem 5, if m is an impartial trimmed cP-mean of X at level
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a then the interval (l(m), u(m)) defines the <P-best trimming functions
associated to m; i.e., if (r, m) is a solution of (1.3) then

I(I(m),u(m))::;; r::;; I[l(m),u(m)] , Px a,e. (4.3 )

We will prove that such <P-best trimming functions are essentially equal;
i.e., for m being an impartial trimmed <P-mean of X at level a, there exists
essentially a unique <P-best trimming function such that

1~a f r(X) <P(IX-ml) dP= V~.

PROPOSITION 10. Let m be an impartial trimmed <P-mean of X at level a.
If r j and r 2 are <P-best trimming functions for X at level a satisfying (4.3)
then

Px a.e.

Proof Since

hence

i= 1, 2

and then

f rJx) P{lx-ml)sign(x-m)dPx=O, i= 1, 2

i.e.,

(rj(l(m)) - r2(l(m))) P[X = l(m)] = (rj(u(m))- r2(u(m))) P[X = u(m)].

Hence at least one of the following is true:

(a) rj(l(m))=r2(l(m)) and rj(u(m))=rAu(m))

(b) rj(l(m)) = r2(l(m)) and P[X = u(m)] =0

(c) rj(u(m)) = r2(u(m)) and P[X = l(m)] =°
and then

P x a.e. I

As a consequence of the above proposition we have the following result
about the interval defining a <P-best trimming function for X at level a:
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COROLLARY 11. Let m be an impartial trimmed <P-mean of X at level a.
Then at least one of the following is true:

(a) P[XE (l(m), u(m))] = I-a

(b) P[XE [l(m), u(m)]] = I-a

(c) P[X=I(m)]=O

(d) P[X=u(m)] =0.

Proof In fact, if (a)-(d) are false then there exist trimming functions T1

and T2 such that Px['l ¥'2] >0 and

l(/(m),u(m» ~'l' '2 ~ I[l(m),u(m)] Px a,e.

which contradicts Proposition 10. I
Remark 12. The above results are not true for impartial trimmed

CH-centers. Counterexamples with discrete random variables are obvious.

Remark 13. We conjecture that analogous results are true for
Rn-valued random variables; i.e., for each impartial trimmed <P-mean of X
at level a there exists essentially a unique <P-best trimming function and,
therefore, the ball B defining such a <P-best trimming function satisfies one
of the following:

(a) P[XEB]=I-a.

(b) P[X E B] = 1- a.

(c) There exists xoEBd(B) such that P[XEBd(B)] =P[X=xo],
where Bd(B) denotes the boundary of B.

Now the goal is to prove that for real valued random variables X having
a density function j, unimodality is a sufficient condition for the uniqueness
of the impartial trimmed <P-means and CH-centers.

THEOREM 14 (Uniqueness). Let X be a real valued r,v. X defined on
(Q, (J, P), with distribution function F having a differentiable density f which
is unimodal and satisfies f(x) > 0 for all x E R. Let a E (0, 1). Then:

(a) For every convex and strictly increasing function <P with <p(O) = 0
and satisfying (4.1) and (4.2), there exists a unique impartial trimmed
<P-mean of X at level a.

(b) There exists a unique impartial trimmed CH-center of X at level a.

Proof From Proposition 3 the impartial trimmed <P-means of X at
level a are the solutions of

f
u(m)

<P(lt-ml) f(t) dt = V~,
2m-u(m)
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with u(m) the solution of
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F(u(m))-F(2m-u(m))= 1-a.

Let us denote

f
u(m)

V(m) = $(It-ml)f(t)dt;
2m-u(m)

we will prove that there is a unique solution of V'(m) = O.
By deriving in (4.5) we obtain

V'(m) = $(Iu(m) - mj) f(u(m)) u'(m)

- $(Im - u(m)j) f(2m - u(m))(2 - u'(m))

f
u(m)

- 'P(lt-ml) sign(t-m) f(t) dt.
2m-u(m)

Moreover, by deriving in (4.5) we have

(4.4)

(4.5)

u'(m) f(u(m)) = (2 - u'(m)) f(2m - u(m)) (4.6)

and then

f
u(m)

V'(m) = - 'P(jt-mj) sign(t-m) f(t) dt.
2m-u(m)

(4.7)

Let M be the mode of f Since f(M) > f(u(M)) and f(M) >
f(2M-u(M)) hence f(m»f(u(m)) for mE(M1,M) and f(m»
f(2m - u(m)) for mE (M, M 2 ) being

M 1=inf{m~M/f(m» f(u(m))}

and
M 2 = sup{m ';?;M/f(m) > f(2m - u(m))}.

In the following we outline the proof in four steps.

Step 1. V'(m)<O for m<M1.
In fact, applying a trivial change of variable we obtain

f
u(m)

V'(m)= - 'P(lt-ml) sign(t-m)f(t) dt
2m-u(m)

fm fu(m)
= 'P(m-t)f(t)dt- 'P(t-m) f(t)dt

2m-u(m) m

f
u(m)

= - 'P(t - m)(f(t) - f(2m - t)) dt < O.
m
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Step 2. V'(m) is strictly increasing for mE [M I , M].
In fact, by deriving in (4.7) and applying again (4.6) we obtain

V"(m)= -P{u(m)-m) 4f(u(m))f(2m-u(m))
f(u(m)) + f(2m - u(m))

f
u(m)

+ P'(lt-ml)f(t)dt
2m- u(m)

= P(u(m)-m) (f(u(m)- f(2m-u(m))?
f(u(m))+ f(2m-u(m))

f
U(In)

- lJf(lt-ml) sign(t-m)f'(t) dt
2m - u(m)

= lJf(u(m) _ m) (f(u(m)) - f(2m - u(m )))2
f(u(m)) + f(2m-u(m))

f
m fu(m)

+ P(m-t)f'(t)dt-
J

lJf(t-m)f'(t)dt.
2m-u(m) m
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Note that the unimodality off implies thatf'(x) > 0 for every x < M and
f'(x) < 0 for every x> M. Then, it suffices to prove that the last integral is
negative.

Finally, applying once more the unimodality of f taking into account
that lJf is increasing we obtain the inequalities

fM lJf(t - m) f'(t) dt ~ lJf(M - m )(f(M) - f(m))
m

and

f
u(m)

P(t - m) f'(t) dt ~ lJf(M - m )(f(u(m)) - f(M))
M

< lJf(M - m )(f(m) - f(M))

which imply

fu(m) fM fu(m)
'P(t - m) f'(t) dt = 'P(t - m) f'(t) dt + lJf(t - m) f'(t) dt < O.

m m M

With similar techniques we can see that:

Step 3. V'(m) is strictly increasing on [M, M 2 ].

Step 4. V'(m»O for m>M2 •
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Then there exists a unique solution of V' (m) = 0 and the proof of (a) is
finished.

For proving (b) note that the impartial trimmed CH-centers of X at level
IY. are the solutions of

u(m) -m = V~

with u(m) the solution of (4.4).
Let us denote Voo(m)=u(m)-m. From (4.6) we have

I I f(2m-u(m))-f(u(m))
V oo(m)=u (m)-1 = f(2m-u(m))+ f(u(m))

and the unimodality of f assures the uniqueness of the solution of
V:x,(m) = O. Moreover, such a solution is characterized by verifying

f(u(m)) = f(2m - u(m)). I

Remark 15. If the condition 'j(x) > 0 for all x E R" is removed, then
Theorem 14 is also true. In the proof, some caution with the points where
V' (m) is not defined is necessary.
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